Celebrity Neuroscience Blog Makeover

We’ve got our own dedicated hosting account now!

That means our official URLs from now on are…

the-connectome.com

theconnecto.me

Though I’ll keep this blog around as an archive, all posts from now on will be on the new site only.

Here are some things I think you’ll like about the new site:

- More bandwidth for faster load times
- More storage space for high-quality podcasts and videos
- A new design with lots more cool features

So head over and check it out – I think our new look is quite slimming!

Neuroscience Friends!

I’ve just returned from a thrilling weekend at the BIL Conference in Long Beach, California (yes, the pun on “TED” is very intentional) where I met all kinds of smart, fun people – including lots of folks who share my love for braaaiiins!

The conference was held in... The Future!

So I thought I’d introduce you guys to some of the friends I made. I think you’ll be as surprised – and as excited – as I am.

Backyard Brains
Their motto is “neuroscience for everyone” – how cool is that? They sell affordable kits that let you experiment at home with the nervous systems of insects and other creatures. They gave a super-fun presentation where I got to help dissect a cockroach and send electrical signals through its nerves.

Interaxon
They build all kinds of cutting-edge tools that let home users study their brain activity, and even control machines and art projects with it. Their founder, Ariel Garten, has a great TED talk here – I’ve rarely met anyone else who was so excited to have weird new neuroscience adventures.

Deltaself and Dangerously Hardcore
Two blogs by the very smart Naomi Most – the first is about how scientific data is changing the way we all understand our minds and bodies; the second is about hacking your own behavior to stay healthier and live better.

Halcyon Molecular
Their aim is to put the power to sequence and modify genomes in everyone’s hands within the next few decades. They’re getting some huge funding lately, and lots of attention in major science journals.

Bonus – XCOR Aerospace
They’re building a privately-funded suborbital spacecraft for independent science missions. If there’s anybody who can help us all join the search for alien life in the near future, I bet it’s these guys.

So check those links out and let me know what you think. I’d love to get these folks involved in future videos, especially if you’re interested in any of them.

Consider This an Invitation

This photo got me thinking. Only 24 percent? Really?

We’re finding weird new exoplanets every day – hell, NASA hasn’t even ruled out the possibility that there could be life on Europa and Titan, two moons in our own solar system – yet so many people have lost faith in space’s limitless potential to surprise us.

But we’re entering an age when that potential is no longer the exclusive domain of first-world governments and media conglomerates. The fact that we even have a contest like Google’s X Prize proves that independent space exploration is becoming a very real possibility for each one of us.

The question isn’t whether a private company is going to mount an alien-hunting expedition – it’s who’s gonna be the first to try?

Crazy? Of course it’s crazy! Every awesome expedition is!

So what do you guys say? I say it’s possible if we put our resources and our heads together. Even if we don’t find E.T., we’ll have one hell of a story to tell our grandkids.

Forget Me Not

Having trouble remembering where you left your keys? You can improve with a little practice, says a new study.

"I've forgotten more than you'll ever...wait, what was I saying?"

It’s an idea that had never occurred to me before, but one that seems weirdly obvious once you think about it: people who train their brains to recall the locations of objects for a few minutes each day show greatly improved ability to remember where they’ve left things.

No matter what age you are, you’ve probably had your share of “Alzheimer’s moments,” when you’ve walked into a room only to forget why you’re there, or set something down and immediately forgotten where you put it. Attention is a limited resource, and when you’re multitasking, there’s not always enough of it to go around.

For people with real Alzheimer’s disease, though, these little moments of forgetfulness can add up to a frustrating inability to complete even simple tasks from start to finish. This is known as mild cognitive impairment (MCI), and its symptoms can range from amnesia to problems with counting and logical reasoning.

That’s because all these tasks depend on memory – even if it’s just the working memory that holds our sense of the present moment together – and most of our memories are dependent on a brain structure called the hippocampus, which is one of the major areas attacked by Alzheimer’s.

What exactly the hippocampus does is still a hotly debated question, but it seems to help sync up neural activity when new memories are “written down” in the brain, as well as when they’re recalled (a process that rewrites the memory anew each time). So it makes sense that the more we associate a particular memory with other memories – and with strong emotions - the more easily even a damaged hippocampus will be able to help retrieve it.

But now, a team led by Benjamin Hampstead at the Emory University School of Medicine has made a significant breakthrough in rehabilitating people with impaired memories, the journal Hippocampus reports: the researchers have demonstrated that Alzheimer’s patients suffering from MCI can learn to remember better with practice.

The team took a group of volunteers with MCI and taught them a three-step memory-training strategy: 1) the subjects focused their attention on a visual feature of the room that was near the object they wanted to remember, 2) they memorized a short explanation for why the object was there, and 3) they imagined a mental picture that contained all that information.

Not only did the patients’ memory measurably improve after a few training sessions – fMRI scans showed that the training physically changed their brains:

Before training, MCI patients showed reduced hippocampal activity during both encoding and retrieval, relative to HEC. Following training, the MCI MS group demonstrated increased activity during both encoding and retrieval. There were significant differences between the MCI MS and MCI XP groups during retrieval, especially within the right hippocampus.

In other words, the hippocampus in these patients became much more active during memory storage and retrieval than it had been before the training.

Now, it’s important to point out that that finding doesn’t necessarily imply improvement – studies have shown that decreased neural activity is often more strongly correlated with mastery of a task than increased activity is – but it does show that these people’s brains were learning to work differently as their memories improved.

So next time you experience a memory slipup, think of it as an opportunity to learn something new. You’d be surprised what you can train your brain to do with a bit of practice.

That is, as long as you remember to practice.

The Connectome Channel – Episode 1 – “Signals”

5 Ways to Fight the Blues…with Science!

So you’re stuck in that mid-week slump…the weekend lies on the other side of a scorching desert of work, and you have no canteen because you gave up water for Lent (in this metaphor, “water” refers to alcohol…just to be clear).

YAY SCIENCE!

But fear not! Neuroscience knows how to cheer you up! Nope, this isn’t another post about sex or drugs…though those are coming soon. This one’s about five things science says you can do right now – with your mind – to chase your cranky mood away.

1.Take a look around
Research shows that people who focus on the world around them, instead of on their own thoughts, are much more likely to resist a relapse into depression. This is easy to do – just find something interesting (or beautiful) to look at, and think about that for a few seconds…you’ll be surprised how quickly your worries fade.

2. Do some mental math
Scientists say doing a little simple arithmetic – adding up the digits of your phone number, for example – reroutes mental resources from worry to logic. Don’t worry; your emotions will still be there when you’re done…but they’re less likely to hog the spotlight if you don’t give them center stage.

3. Get out and about
Lots of studies show that physical activity raises levels of endorphins – the body’s own “feel-good” chemicals – and helps improve your mood throughout the day. You don’t have to run a marathon; even a quick walk around the block will get your blood pumping and help clear your mind.

4. Find some excitement
Some very interesting studies have found that courage – a willingness to face some of your fears – feeds on itself; in other words, the more adventurous your behavior is, the fewer things your brain considers threatening. In a way, it’s a “fake it ’til ya make it” situation…but instead of trying to be someone you’re not, you’re becoming more comfortable with the person you are.

5. Remember, it’s not always a bad thing
It sometimes helps to remember that stress is a natural phenomenon…as natural as digestion or sleep. Though stress (or sadness, or worry) can sometimes get out of hand, our bodies have evolved these responses to help us, and there’s nothing “wrong” with you just because you’re feeling annoyed or down in the dumps today. Instead of trying to make the feeling go away, sometimes the best thing to do is acknowledge it, and think about what’s triggering it. You might surprise yourself with an insight.

So, those tips are pretty simple, right? Try some of ‘em out, and let me know which ones worked best for you. After all, that’s why scientists study this stuff – to help us all understand more about what our minds are up to.

Connection Clusters

As our brains learn something, our neurons form new connections in clustered groups, says a new study.

Some clusters are juicier than others.

In other words, synapses – connections between neurons – are much more likely to form near other brand-new synapses than they are to emerge near older ones.

As our neuroscience friends like to say: “Cells that fire together wire together” – and that process of rewiring never stops. From before you were born right up until this moment, the synaptic pathways in your brain have been transforming, hooking up new electrochemical connections and trimming away the ones that aren’t needed. Even when you’re sound asleep, your brain’s still burning the midnight oil, looking for ever-sleeker ways to do its many jobs.

I like to imagine that this happens to the sound of a really pumped-up drumbeat, as my brain says things like, “We can rebuild this pathway – we have the technology! We can make it better! Faster! Stronger!”

What’s even more amazing is how delicate these adjustments can be. We’re not just talking about growing dendrites here – we’re talking about dendritic spines, the tiny knobs that branch off from dendrites and bloom into postsynaptic densities – molecular interfaces that allow one neuron to receive information from its neighbors.

Back in 2005, a team led by Yi Zuo at the University of California Santa Cruz found that as a mouse learns a new task, thousands of fresh dendritic spines blossom from the dendrites of neurons in the motor cortex (an area of the brain that helps control movement). In short, they actually observed neurons learning to communicate better.

And now Zuo’s back with another hit, the journal Nature reports. This time, Zuo and her team have shown that those new dendritic spines aren’t just popping up at random – they grow in bunches:

A third of new dendritic spines (postsynaptic structures of most excitatory synapses) formed during the acquisition phase of learning emerge in clusters, and that most such clusters are neighbouring spine pairs.

The team discovered this by studying fluorescent mouse neurons under a microscope (Oh, did you know there are mice with glowing neurons? Because there are mice with glowing neurons.). As in Zuo’s earlier study, they focused on neurons in the motor cortex:

We followed apical dendrites of layer 5 pyramidal neurons in the motor cortex while mice practised novel forelimb skills.

But as it turned out, their discovery about clustered spines was just the tip of the iceberg – the researchers also found that when a second dendritic spine formed close to one that was already there, the first spine grew larger, strengthening the connection even more. And they learned that clustered spines were much more likely to persist than non-clustered ones were, which just goes to show the importance of a solid support network. And finally, they found that the new spines don’t form when just any signal passes through – new connections only blossom when a brain is learning through repetition.

Can you imagine how many new dendritic spines were bursting to life in the researchers‘ brains as they learned all this? And what about in your brain, right now?

It’s kinda strange to think about this stuff, I know – even stranger is the realization that your brain isn’t so much an object as it is a process – a constantly evolving system of interconnections. You could say that instead of human beings, we’re really human becomings – and thanks to your adaptable neurons, each moment is a new opportunity to decide who – or what – you’d like to become.

Follow

Get every new post delivered to your Inbox.

Join 75 other followers