Posts Tagged ‘ learning ’

Neuroscience Friends!

I’ve just returned from a thrilling weekend at the BIL Conference in Long Beach, California (yes, the pun on “TED” is very intentional) where I met all kinds of smart, fun people – including lots of folks who share my love for braaaiiins!

The conference was held in... The Future!

So I thought I’d introduce you guys to some of the friends I made. I think you’ll be as surprised – and as excited – as I am.

Backyard Brains
Their motto is “neuroscience for everyone” – how cool is that? They sell affordable kits that let you experiment at home with the nervous systems of insects and other creatures. They gave a super-fun presentation where I got to help dissect a cockroach and send electrical signals through its nerves.

Interaxon
They build all kinds of cutting-edge tools that let home users study their brain activity, and even control machines and art projects with it. Their founder, Ariel Garten, has a great TED talk here – I’ve rarely met anyone else who was so excited to have weird new neuroscience adventures.

Deltaself and Dangerously Hardcore
Two blogs by the very smart Naomi Most – the first is about how scientific data is changing the way we all understand our minds and bodies; the second is about hacking your own behavior to stay healthier and live better.

Halcyon Molecular
Their aim is to put the power to sequence and modify genomes in everyone’s hands within the next few decades. They’re getting some huge funding lately, and lots of attention in major science journals.

Bonus – XCOR Aerospace
They’re building a privately-funded suborbital spacecraft for independent science missions. If there’s anybody who can help us all join the search for alien life in the near future, I bet it’s these guys.

So check those links out and let me know what you think. I’d love to get these folks involved in future videos, especially if you’re interested in any of them.

Consider This an Invitation

This photo got me thinking. Only 24 percent? Really?

We’re finding weird new exoplanets every day – hell, NASA hasn’t even ruled out the possibility that there could be life on Europa and Titan, two moons in our own solar system – yet so many people have lost faith in space’s limitless potential to surprise us.

But we’re entering an age when that potential is no longer the exclusive domain of first-world governments and media conglomerates. The fact that we even have a contest like Google’s X Prize proves that independent space exploration is becoming a very real possibility for each one of us.

The question isn’t whether a private company is going to mount an alien-hunting expedition – it’s who’s gonna be the first to try?

Crazy? Of course it’s crazy! Every awesome expedition is!

So what do you guys say? I say it’s possible if we put our resources and our heads together. Even if we don’t find E.T., we’ll have one hell of a story to tell our grandkids.

Forget Me Not

Having trouble remembering where you left your keys? You can improve with a little practice, says a new study.

"I've forgotten more than you'll ever...wait, what was I saying?"

It’s an idea that had never occurred to me before, but one that seems weirdly obvious once you think about it: people who train their brains to recall the locations of objects for a few minutes each day show greatly improved ability to remember where they’ve left things.

No matter what age you are, you’ve probably had your share of “Alzheimer’s moments,” when you’ve walked into a room only to forget why you’re there, or set something down and immediately forgotten where you put it. Attention is a limited resource, and when you’re multitasking, there’s not always enough of it to go around.

For people with real Alzheimer’s disease, though, these little moments of forgetfulness can add up to a frustrating inability to complete even simple tasks from start to finish. This is known as mild cognitive impairment (MCI), and its symptoms can range from amnesia to problems with counting and logical reasoning.

That’s because all these tasks depend on memory – even if it’s just the working memory that holds our sense of the present moment together – and most of our memories are dependent on a brain structure called the hippocampus, which is one of the major areas attacked by Alzheimer’s.

What exactly the hippocampus does is still a hotly debated question, but it seems to help sync up neural activity when new memories are “written down” in the brain, as well as when they’re recalled (a process that rewrites the memory anew each time). So it makes sense that the more we associate a particular memory with other memories – and with strong emotions - the more easily even a damaged hippocampus will be able to help retrieve it.

But now, a team led by Benjamin Hampstead at the Emory University School of Medicine has made a significant breakthrough in rehabilitating people with impaired memories, the journal Hippocampus reports: the researchers have demonstrated that Alzheimer’s patients suffering from MCI can learn to remember better with practice.

The team took a group of volunteers with MCI and taught them a three-step memory-training strategy: 1) the subjects focused their attention on a visual feature of the room that was near the object they wanted to remember, 2) they memorized a short explanation for why the object was there, and 3) they imagined a mental picture that contained all that information.

Not only did the patients’ memory measurably improve after a few training sessions – fMRI scans showed that the training physically changed their brains:

Before training, MCI patients showed reduced hippocampal activity during both encoding and retrieval, relative to HEC. Following training, the MCI MS group demonstrated increased activity during both encoding and retrieval. There were significant differences between the MCI MS and MCI XP groups during retrieval, especially within the right hippocampus.

In other words, the hippocampus in these patients became much more active during memory storage and retrieval than it had been before the training.

Now, it’s important to point out that that finding doesn’t necessarily imply improvement – studies have shown that decreased neural activity is often more strongly correlated with mastery of a task than increased activity is – but it does show that these people’s brains were learning to work differently as their memories improved.

So next time you experience a memory slipup, think of it as an opportunity to learn something new. You’d be surprised what you can train your brain to do with a bit of practice.

That is, as long as you remember to practice.

Connection Clusters

As our brains learn something, our neurons form new connections in clustered groups, says a new study.

Some clusters are juicier than others.

In other words, synapses – connections between neurons – are much more likely to form near other brand-new synapses than they are to emerge near older ones.

As our neuroscience friends like to say: “Cells that fire together wire together” – and that process of rewiring never stops. From before you were born right up until this moment, the synaptic pathways in your brain have been transforming, hooking up new electrochemical connections and trimming away the ones that aren’t needed. Even when you’re sound asleep, your brain’s still burning the midnight oil, looking for ever-sleeker ways to do its many jobs.

I like to imagine that this happens to the sound of a really pumped-up drumbeat, as my brain says things like, “We can rebuild this pathway – we have the technology! We can make it better! Faster! Stronger!”

What’s even more amazing is how delicate these adjustments can be. We’re not just talking about growing dendrites here – we’re talking about dendritic spines, the tiny knobs that branch off from dendrites and bloom into postsynaptic densities – molecular interfaces that allow one neuron to receive information from its neighbors.

Back in 2005, a team led by Yi Zuo at the University of California Santa Cruz found that as a mouse learns a new task, thousands of fresh dendritic spines blossom from the dendrites of neurons in the motor cortex (an area of the brain that helps control movement). In short, they actually observed neurons learning to communicate better.

And now Zuo’s back with another hit, the journal Nature reports. This time, Zuo and her team have shown that those new dendritic spines aren’t just popping up at random – they grow in bunches:

A third of new dendritic spines (postsynaptic structures of most excitatory synapses) formed during the acquisition phase of learning emerge in clusters, and that most such clusters are neighbouring spine pairs.

The team discovered this by studying fluorescent mouse neurons under a microscope (Oh, did you know there are mice with glowing neurons? Because there are mice with glowing neurons.). As in Zuo’s earlier study, they focused on neurons in the motor cortex:

We followed apical dendrites of layer 5 pyramidal neurons in the motor cortex while mice practised novel forelimb skills.

But as it turned out, their discovery about clustered spines was just the tip of the iceberg – the researchers also found that when a second dendritic spine formed close to one that was already there, the first spine grew larger, strengthening the connection even more. And they learned that clustered spines were much more likely to persist than non-clustered ones were, which just goes to show the importance of a solid support network. And finally, they found that the new spines don’t form when just any signal passes through – new connections only blossom when a brain is learning through repetition.

Can you imagine how many new dendritic spines were bursting to life in the researchers‘ brains as they learned all this? And what about in your brain, right now?

It’s kinda strange to think about this stuff, I know – even stranger is the realization that your brain isn’t so much an object as it is a process – a constantly evolving system of interconnections. You could say that instead of human beings, we’re really human becomings – and thanks to your adaptable neurons, each moment is a new opportunity to decide who – or what – you’d like to become.

Why I Love and Hate “Game”

Yes, it’s that special time of year again – time for flamboyant bouquets and chalky candy to appear at office desks – time for Facebook pages to drown in cloying iconography – time for self-labeled “forever aloners” to dredge the back alleys of OKCupid in last-ditch desperation – and time for me to load up my trusty gatling crossbow with oxytocin-tipped darts and hit the streets.

Valentine's Day also means it's time to enjoy the traditional dish of Earlobe.

Oh, and it’s time for everyone to complain about how misogynistic all this “Game” stuff is.

So, while I guess I could write about, say, a new study that says cutting your romantic partner some slack can make him or her more capable of actual change, or this one that says love and chocolate are good for cardiovascular health, I think it’ll be much more interesting to talk about what’s really on most of our minds today:

What does science have to say about “getting the girl” (or guy) of your dreams? And what do actual girls (and guys) think about it?

Let’s start with some full disclosure: about this time last year, I decided to see what all the fuss was about, and I read The Game for myself – and then I read some of the other works it cites, too. And I started talking to my friends (both male and female) about what they thought of the ideas in those books – and I tested a lot of the ideas I read, the same way I’d test any hypothesis: I wrote down the predictions various authors made, and checked how well those predictions lined up with my own real-world experiences.

In short, I went Full Geek on the topic.

What I learned is that, on the spectrum of scientific rigorousness – a scale from, say, astrology (0) to molecular chemistry (10) – most of this stuff falls somewhere in the 4-to-6 range: It tends to be more evidence-based than, say, ghost-hunting; but it still falls firmly into the realm of the “softer” sciences, like psychotherapy and so on.

The reason for this is that – as many pick-up artists freely admit – their craft is at least as much an artistic pursuit as a scientific one. Much like, say, Aristotle and Hobbes and Descartes, PUAs do their best to ground their conclusions logically in real-world data that anyone is free to test and refute – but at the same time, like those great philosophers of old, PUAs tend to be more intent on constructing elaborate thought systems than on presenting their “ugly” raw data for independent labs to crunch through.

This means pick-up manuals tend to read more like philosophical treatises than scientific papers.

And I think it’s this very feature of pick-up art that explains why it’s such a polarizing topic – why many women (and plenty of men) find the very concept insulting and distasteful, while other men swear that it’s transformed them from self-loathing losers into sexually fulfilled alpha males.

See, many women will tell you in no uncertain terms that pickup “tricks” don’t work on someone as intelligent and experienced as them; and that even if such tricks did work, they don’t want to be “picked up” –  instead, they want to fall in love (or at least in lust) with a man who’s honest about his real self and his real feelings. Many men, too, would agree that crafty seduction techniques somehow cheapen the process – that it’s better to be “forever alone” than to be surrounded by adoring women who were manipulated into their romantic feelings.

Meanwhile, men who’ve had “success” (however they choose to define it) as a result of a pick-up system’s techniques will often defend that system to the death – much like how a person who’s found inner peace thanks to, say, Buddhism will often defend it passionately against anti-Buddhist viewpoints.

What I’m arguing here, though, is that none of these reactions pertain directly to the underlying process of seduction at all – rather, they’re reactions to the (often sleazy-sounding) thought-systems that various writers have constructed around their experiences with that process.

Because – let’s get right down to it – in all our interactions with other humans, we’re hoping to manipulate the outcome somehow. Double entendres, pop-cultural references, stylish clothes and makeup, kind gestures, subtle dishonesty – even honesty itself – all these are tools and techniques that we hope will garner us a certain response.

For example, if you choose to callously manipulate the people around you, you may get a lot more sex than you would otherwise – but you’ll also end up with a lot of shallow relationships, which you’ll probably come to regret eventually. If you choose to be completely honest all the time, you may repel some people – but you’ll probably also find that those who stick around end up respecting you for who you really are.

It’s Game Theory 101: Players who “win” are those who understand the rules, risks and rewards of the game – and play accordingly. All the sleazy lingo and tricks – all the elaborate systems – are just various people’s attempts to explain these dynamics as they play out in gender relations, and to sell their vision of the process to a demographic of sex-starved men, whose desires they understand quite well.

But still – the underlying process itself is no more and no less sleazy than the mind of the person using it.

In other words, when you read between the lines of these PUA systems, most of them turn out to be geared toward the same premises: That to grow as a person, you need to 1) be fully honest with yourself about what you want from the people around you, 2) acknowledge the personal changes that need to be made in order to achieve those results, and 3) steadily work to make those changes in yourself.

From an evolutionary psychology perspective, it’s hard for me to see how that’s inherently more “cheap” than, say, a woman learning how to dress and speak seductively in order to get what she wants.

Yes, there are a lot of sleazy men out there who objectify women and sweet-talk them into one-night stands. There are also plenty of sweet-talking women out there who milk men for the contents of their wallets, then move on. And so we label each other “douchebags” and “bitches,” and keep engaging in the same defensive behaviors, and no one’s really happy.

And I hate that Game. I despise it.

At the same time, though, it’s clear that we humans, like many other animals, have evolved to play competitive social games – there’s no getting around that fact. But unlike many animals, we don’t have to play the game exactly as our instincts tell us to – we’re metacognitive, so we can learn to play using strategies that don’t result in zero-sum outcomes: We can develop tactics that help both sides get more of what they want. We can harness our evolutionary drives to mutually-beneficial behavior patterns.

Doesn’t that make you want to learn to play more creatively, instead of trying not to play at all?

I mean, at the end of the day, it kinda fills me with love for the Game.

What do you think?

Beyond Perfection

If you continue to practice a skill even after you’ve achieved mastery of it, your brain keeps learning to perform it more and more efficiently, says a new study.

Believing you've reached perfection can lead you to engage in some...interesting...behavior.

As we perform a task – say, dunking a basketball or playing a sweet guitar solo – over and over again, we eventually reach a point that some psychologists call “unconscious competence,” where we execute each movement perfectly without devoting any conscious attention to it at all. But even after this point, our bodies keep finding ways to perform the task more and more efficiently, burning less energy with each repetition.

This story’s got it all – brain-hacks, mysterious discoveries, robots – but to put it all in perspective, we’ve gotta start by talking about this idea we call perfection.

“Practice makes perfect,” the old saying goes – but what’s this “perfect” we’re trying to reach? Isn’t it often a matter of opinion? What I mean is, how do we judge, say, a “perfect” backflip or a “perfect” dive? We compare it to others we’ve seen, and decide that it meets certain criteria better than those examples did; that it was performed with less error.

But where do these criteria for perfection come from? Well, some have said there’s a Platonic realm of “perfect forms” that our minds are somehow tapping into – a realm that contains not only “The Perfect Chair” but “the perfect version of that chair” and “the perfect version of that other chair” and “the perfect version of that molecule” and so on, ad infinitum. Kinda weird, I know – but a lot of smart people believed in ideas like this for thousands of years, and some still do.

Science, though, works in a different way: Instead of trying to tap into a world of perfect forms, scientists (and engineers and mathematicians and programmers and so on) work to find errors and fix them.

And it turns out that the human body is quite talented at doing exactly that. A team led by Alaa Ahmed at the University of Colorado at Boulder found this out firsthand, with the help of robots, the Journal of Neuroscience reports:

Seated subjects made horizontal planar reaching movements toward a target using a robotic arm.

These researchers weren’t interested in brain activity – instead, as the volunteers practiced moving the arm, the researchers measured their oxygen consumption, their carbon dioxide output, and their muscle activity.

As you might expect, the scientists found that as people got better at moving the arm, their consumption of oxygen and production of carbon dioxide, and their overall muscle activity, steadily decreased:

Subjects decreased movement error and learned the novel dynamics. By the end of learning, net metabolic power decreased by ∼20% from initial learning. Muscle activity and coactivation also decreased with motor learning.

But the volunteers’ bodies didn’t stop there. As people kept practicing, their gas consumption and output continued to decrease – and so did their muscle activation. In short, their bodies kept learning to move the arm with measurably less and less physical effort.

Though this study didn’t record any data from the subjects’ brains, it’s easy to see how this continual improvement is just one reflection of a very versatile ability. For instance, we know that when two neurons get really friendly, they become more sensitive to each others’ signals – and we also know that underused neural pathways gradually fade away, making room for new ones. Self-improvement impulses are woven deeply into our bodies – into our cells.

When I say that our brains and bodies are cities, I’m not just speaking metaphorically – you are, quite literally, a vast community – an ecosystem composed of trillions of interdependent microorganisms, each one constantly struggling for its own nourishment and safety.

And though your conscious mind is one part – a very significant part – of this great microscopic nation, it’s not the only part that can learn. At this moment, all throughout the lightless highways and chambers of your body, far below your conscious access, networks of cells are changing, adapting, learning, adjusting - finding errors and fixing them.

So, you can think about “perfection” all you want – but even at that magical moment when you achieve it, the multitudes within you are still hard at work, figuring out how to reach beyond that ideal.

What do you think they’re up to right now?

Learning Expectations

Researchers have isolated a specific pathway our brains use when learning new beliefs about others’ motivations, a new study says.

"M'lord! 'Tis improper to influence the lady's anterior cingulate!"

Though this type of learning, like many others, depends heavily on the neurotransmitter chemical dopamine‘s influence in a set of ancient brain structures called the basal ganglia, it’s also influenced by the rostral anterior cingulate cortex (ACC) – a structure that helps us weigh certain emotional reactions against others – indicating that emotions like empathy also play crucial roles.

As we play competitively against other people, our brains get to work constructing mental models that aim to predict our opponents’ future actions. This means we’re not only learning from the consequences of our own actions, but figuring out the reasons behind others‘ actions as well. This ability is known as theory of mind, and it’s thought to be one of the major mental skills that separates the minds of humans – and of our closest primate cousins – from those of other animals.

Though plenty of studies have examined the neural correlates of straightforward cause-and-effect learning, the process by which we learn from the actions of other people still remains somewhat unclear – largely because complex emotions like empathy and regret seem to involve many areas of the brain, including parts of the temporal, parietal and prefrontal cortices, as well as more ancient structures like the basal ganglia and cingulate cortex.

That’s why a team led by the University of Illinois’ Kyle Mathewson set out to track exactly what happens in our brains as we learn new ideas about other’s motivations, the journal Proceedings of the National Academy of Sciences reports.

The team used functional magnetic resonance imaging (fMRI) to study activity deep within volunteers’ brains as they played a competitive betting game against one another – focusing especially on moments when players learned whether they’d won or lost a round, and how much their opponents had wagered.

The researchers then used a computational model to match up patterns of brain activity with patterns of play – and found that the volunteers’ brains learned others’ behaviors and motivations through a complex interplay of several regions:

We found that the reinforcement learning (RL) prediction error was correlated with activity in the ventral striatum.

In other words, the ventral striatum – an area of the basal ganglia – was crucial for learning by reinforcement, much as the researchers expected…

In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning.

…while the anterior cingulate, on the other hand, seemed to dictate how attentively players watched their opponents’ patterns of play, and how much thought they put into predicting those patterns.

Thus, it appears that theory of mind is built atop an ancient “substructure” of simple reinforcement learning, which supports layers of more emotionally complex attitudes and beliefs about others’ thoughts, feelings and motivations – many of which are influenced by our perceptions of our own internal feelings.

And that points back to an important aspect of subjective experience in general: Many of our perceptions of the external world are extrapolated from our perceptions of our internal states. When we say, “It’s hot,” we really mean, “I feel hot;” when we say, “It’s loud in here,” we really mean, “It sounds loud to me.” In fact, the great philosopher Bertrand Russell has gone so far as to suggest that instead of saying, “I think,” it’d be more accurate to say “It thinks in me,” the same way we say “It’s raining.”

Anyway, no matter how you choose to phrase it, the point is that thinking isn’t a single process, but a relationship of many processes to one another. Which means that no matter how much we think we know, there’s always plenty left to learn.

Follow

Get every new post delivered to your Inbox.

Join 74 other followers