Chemical Parasites


A certain brain parasite actually turns off people’s feelings of fear by increasing levels of the neurotransmitter chemical dopamine, says a new study.

T. gondii, gettin' ready to blow your %@&#$ mind.

Toxoplasma gondii, a parasitic protozoan (a kind of single-celled organism), mostly likes to live in the brains of cats – but it also infects birds, mice, and about 10 to 20 percent of people in the U.S. and U.K. This might sound like science fiction, but plenty of microbiologists will assure you it’s very real.

In fact, T. gondii isn’t the only parasite that controls its hosts’ behavior – a fungus called Ophiocordyceps unilateralis makes infected ants climb to the highest point they can find, sprout fungal spore pods from their heads, then stay there and starve to death; at which point the spores are unleashed to recruit more ants for the fungus’s zombie army. Other microbes force spiders to weave cocoons for them, or make roaches lay immobile while larvae grow inside their bodies, then chew their way out. Um, yeah, so… nature is pretty frickin’ hardcore.

Anyway, back to the parasite at hand. Throughout the past few years, a University of Leeds microbiologist named Glenn McConkey has worked at the forefront of T. gondii research – in 2009, his team made the astonishing discovery that the microbe’s genome encodes instructions for producing dopamine: in essence, this bug is living cocaine, and it’s bending the minds of millions of people at this very moment.

And now, as the journal PLoS ONE reports, McConkey’s team has made a breakthrough that is, if anything, even more incredible: once the parasite has taken up residence in a brain, it triggers the production and release of dopamine at a much greater level than normal, causing infected animals (including people) to engage in impulsive, compulsive and/or fearless behavior:

In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released … Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells.

In short, by changing the electrochemical properties of dopaminergic neurons (those that deal with dopamine transmission and reception), T. gondii basically causes its host’s brain to shout “I’m awesome!” ceaselessly at top volume. You can imagine the havoc this wreaks.

If the host is, say, a mouse or a bird, impulsive and fearless behavior will typically get it gobbled up by a predator, which allows the parasite to move into a new host and spawn a new generation. But if the host happens to be a human being – well, there’s no telling what might happen. For one thing, studies have found a strong link between T. gondii infection and schizophrenia.

Thanks to Science, though, there’s hope – McConkey’s team is optimistic that these new results will help doctors diagnose T. gondii infections more quickly and accurately, and perhaps use dopamine antagonists – drugs that block dopaminergic activity – to fight some of the psychotic symptoms these crazy little guys cause.

So, I guess one big question remains: why the hell isn’t this story making front-page news? Your guess is as good as mine. Kinda spooky, isn’t it?

2 thoughts on “Chemical Parasites

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s